

A Study on Repetitive Control Systems for Linear Motors

謝宗憲

國立成功大學 製造資訊與系統所 陳文泉

工研院機械所 智慧機械技術組 機電控制整合部 陳英敏 陳響亮

國立成功大學 工研院機械所 製造資訊與系統所 智慧機械技術組

關鍵詞

- 重複性控制 Repetitive Controller
- 零相位誤差追蹤控制器 **ZPETC** (Zero Phase Error Tracking Controller)
- PTC • 完全追蹤控制器 (Perfect Tracking Controller)
- 線性馬達 Linear Motor
- Command Feed-forward Controller • 命令前饋
- 零相位低通濾波器 Zero Phase Low Pass Filter

摘要

本研究針對週期性響應誤差之消除,運用離散 時域下重複性控制理論,建構一可使重複性輸入訊 號之響應達到漸近穩定與有效抑制干擾之系統。在 理論推導分析方面,本研究藉由完全補償之概念與

零相位低通濾波器之導入來補償重複控制器之穩定 範圍,以提高系統之強健性。此外,再以命令前饋 之概念,導入速度與加速度前饋增益,有效的提升 重複性控制器之追蹤能力,改善系統響應誤差。最 後經由電腦模擬與實驗,證明本論文所使用之方法 可以有效的消除週期性響應誤差。

前言

現今製造產業中所使用的機台設備,大多是配 合旋轉馬達、線型馬達與機械手臂進行固定的重複 動作,例如裝配、檢測、焊接、噴漆、鑽孔等,為 了達到此重複性動作,則必須重複性的輸入運動訊 號。如今電子產業的蓬勃發展,其對工作場所潔淨 度的要求亦日趨嚴苛,而傳統旋轉馬達必須配合導 螺桿之使用方能達成定位之目的,導螺桿傳動時所 造成之磨損,則會成爲工作場所的重要污染源。直 接驅動裝置的線型馬達機台設備,除了無上述污染

的問題外,亦無導螺桿傳動所造成背隙和撓曲等問題,況且其具有較高之加速度與精密定位之優點, 再加上控制技術的日趨成熟,故近年來愈來愈受到 重視。

在生產加工過程中,製造的品質與產量是生產 的兩大目標,因此除了高效率與高精度之工具機 外,還需搭配高性能的運動控制器來達到一定的需 求,才能有效展現機台效能。但對週期性參考輸入 之系統而言,其追蹤誤差則通常也會是不收斂之週 期性響應。目前業界常使用 PID 控制器或增加控制 器增益之方法,來達到消除系統誤差之目標,但此 舉會降低定位精度與超越量增加之現象產生。其中 較具代表性的解決方法爲重複控制(Repetitive Control,本文簡寫爲 RC)或學習控制(Learning Control)[1]。為了瞭解此重複控制架構,本文以一龍 門型線型馬達機台之水平(Y Axis)與垂直軸(Z Axis) 爲受控場,如圖一所示,以典型重複控制器(Prototype repetitive controller)[2][3]之設計概念,進行兩軸運動 系統下之研究與實現,驗證所提出之理論方法能有 效使系統響應誤差漸近收斂且具強健性。

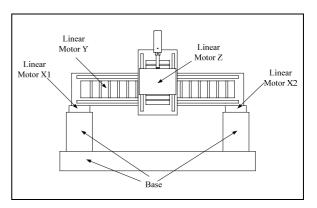
重複控制理論分析與設計

雖然線性馬達為高速高精度伺服系統,但在高速運動下,還是會有運動跟不上命令而造成伺服落後(Servo Lag)的問題,影響線性馬達的定位精度及定位時間。故本研究除了基於 Tomizkua[2][3][4]之架構,另外加入命令前饋迴路以改善追蹤性能(Tracking Performance),完成整體設計目標。

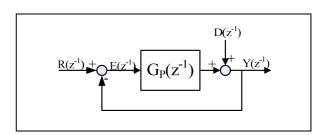
一、重複控制器之理論分析

首先考慮一原始受控場 *GP* 之閉迴路控制方塊圖,假設其爲閉迴路穩定之系統,如圖二所示,由圖二可得不含干擾之原受控場閉迴路轉移函數爲

 $G_{PC}(z^{-1})$:


$$G_{PC}(z^{-1}) = \frac{G_P(z^{-1})}{1 + G_P(z^{-1})}$$
 (1)

誤差與參考輸入之關係式:


$$E(z^{-1}) = \frac{R(z^{-1}) - D(z^{-1})}{1 + G_P(z^{-1})}$$

$$= [1 - G_{PC}(z^{-1})][R(z^{-1}) - D(z^{-1})]$$
(2)

由式(2)可看出,在一穩定系統中,若輸入訊號 或干擾訊號具週期性,則響應誤差會呈現週期性震 盪,無法收斂。加入重複控制器後,則得到如圖三 之系統架構圖,於圖三中,其中 *W(k)* 為重複控制之 命令,可知:

圖一 龍門型受控場架構圖

圖二 原始受控場之閉迴路控制方塊圖

更完整的內容

請參考紙本【機械工業雜誌】325期·99年4月號

每期 220 元 • 一年 12 期 2200 元

劃撥帳號:07188562 工業技術研究院機械所

訂書專線: 03-591-9342 傳真訂購: 03-582-2011