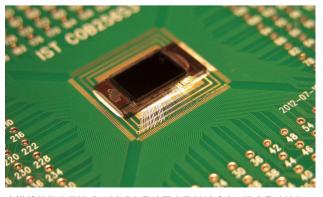
## 臺灣構裝材料產業的機會!

## 雲端、巨量資料 帶動3DIC前景

因應智慧型手持裝置的輕薄短小趨勢,次世代記憶體與處理器需要更先進的半導體製程與封裝技術,藉 此驅動 3D IC 市場榮景以及關鍵材料的商機,對此,臺灣應藉由完整半導體產業鏈的競爭優勢,加速投入 技術發展。

撰文/工研院IEK張致吉、駱韋仲、陳文彦、潘益宗 整理/葉玉琴、劉麗惠 照片提供/工研院


應智慧手持終端的發展持續朝向輕薄、短小、多功能、省電、廉價、快速等趨勢邁進,應用處理器與次世代記憶體等關鍵零組件必須採用先進 3D IC 垂直堆疊技術,才能滿足終端產品對高頻寬、低功耗的需求,藉此帶來 3D IC 未來的市場榮景。「3D IC 趨勢所帶動的關鍵材料需求,更成為不容忽視的商機之一。」工研院 IEK 指出,全球 3D IC 與晶圓級(WLP)材料市場在2010 年僅約 4.7 億美元,預估至2016 年將具有17.9 億美元規模,年複合成長率(CAGR)高達25%。

## 不容忽視的 3D IC 製程結構與關鍵材料

「未來電子產品的應用趨勢除了持續緊扣雲端服務,可以預期的是,Data Center 也將使電子產品持續追求高效能、節能、低成本等特性,」工研院 IEK 材料研究部研究員張致吉指出,有鑑於下游中高階伺服器、網通設備與繪圖應用產品不斷強調大容量與資料處理速度,並根據預期 2014 年 Xilinx、Cisco、Nvidia、Intel 等國際大廠將陸續採用 2.5D 與 3D IC 製程來發展 FPGA、CPU / GPU 和下世代記憶體產品等,藉以滿足終端市場的需求。

因應終端產品需求,3DIC 製程發展不斷往前推進, 張致吉説,目前構裝產品追求的製程目標包括:尺寸縮 小 35%、功率降低 50%、功能與頻寬增加 8 倍,以及超越摩爾定律,希望將半導體元件與模組的功能性與整合度發揮到極致。

而要達成上述目標,市場需要更先進的 3D IC 堆疊技術。張致吉強調,3D IC 技術很早就有,而且技術演進速度非常快,其中 3D IC 堆疊技術已從較早的打線接合(Wire Bond)、覆晶(Flip Chip)、嵌入式晶圓級封裝(Embedded WLP),一直發展到堆疊式晶圓級封裝(Stacked Chip Scale Package;SCSP)、封裝層疊(Package on Package,PoP)以及矽穿孔(TSV)等。從技術發展脈絡可以發現,半導體構裝產業不斷在追求可以減少晶片厚度及材料成本、提升晶片效能、降低電磁干擾與功



半導體構裝產業追求可以減少晶片厚度及材料成本、提升晶片效能、 降低電磁干擾與功率消耗的 3D 堆疊封裝技術。



臺灣因半導體產業鏈完整,因此具有 3D IC 生態發展優勢,贏得商機的機會很大。

率消耗的 3D 堆疊封裝技術。

層出不窮的 3D IC 堆疊技術也對關鍵材料廠商帶來 挑戰。張致吉分析,不同堆疊封裝技術所需的關鍵材料 各不相同,大抵上,3DIC 廠商對材料的選擇主要以高可 靠性與容易導入製程為兩大重點,因此,材料廠商必須 發展出具可靠性又容易導入製程的產品,才能贏得市場 **青**睞。

綜合歸納 3DIC 製程結構、關鍵技術與相關材料, 可以發現 TSV 成形、晶圓薄化技術、晶圓操控 (wafer Handling)、中介層(interposer)、晶圓接合與組合都 是廠商需要持續關注的重點。若從材料切入,則以重分 布層(RDL)、結合(bonding),以及阻障層(barrier layer)與晶種層(Seed Layer)的化學沉積,是臺廠最具 發展潛力的項目。

## 我國半導體產業鏈完整 臺廠機會大

「面對 3D IC 趨勢所驅動的市場機會,臺灣因半導 體產業鏈完整,因此具有 3D IC 生態發展優勢,贏得商 機的機會很大。」張致吉認為,依目前製程技術與設備 到位的情勢來看,臺灣半導體產業鏈如果由台積電、聯 電等前段製造廠商向後延伸至中段製程,便可加速產業 發展。

如果由後段製程向前延伸至中段布局,雖然需要較

長的發展時間,但對於產業結構 發展較為全面性。張致吉分析, 未來中高階智慧終端可能採用 Embedded SiP / Fan-out PoP 等偏 後段製程的泛 3DIC 技術,所以 嫡合我國載板供應商切入,預計 未來泛 3D IC 技術領域,封測廠 和載板廠將囊括8成以上產能。

綜觀 3D IC 製程設備與材料 供應現況,目前大部分仍為國外 供應商所把持,此外,各國正競 相組成 3D IC 聯盟,希望借力各 方資源,尋找設備搭配材料的最 佳解決方案,駱韋仲表示,面對

此一競爭趨勢,工研院也已經成立「先進堆疊系統與應 用研發聯盟」(Ad-STAC),提供聯盟廠商完整 3D IC 製 程測式運作平台之外,也協助廠商使用國廠化設備與材 料,降低成本,並且積極與國際鏈結,協助拓展全球市 場。

陳文彥則指出,在3DIC製程元件尚未標準化之前, 要做材料開發的風險相對較高,而且根據過去經驗,愈 接近前段製程,所使用的材料量愈少,臺廠要攻克的希 望也是愈渺茫,因此,工研院將特別著墨於使用量多的 耗材,目前也攜手業界提出計畫,擬開發中介層用材料。

潘益宗則強調,做3DIC製程關鍵地位的材料領域, 在 3D IC 成本結構中的占比並不多,因此廠商絕不會輕 易冒險更動已經驗證無虞的材料,就算免費提供新材料 以供測試也無用。

所以,臺廠應從製程研發先期就要簽訂長期合作的 契約,要不就是找出具有利基點的標的,然後花時間蹲 馬步,力求端出全球最佳的解決方案。

總而言之,3DIC是一定會發生的願景,面對此一 趨勢,我國半導體上下游廠商都應該對處於 3D IC 關鍵 地位的材料領域,有更深的著墨,不管是國內上下游產 業鏈的整合或是因循國際大廠積極進行策略聯盟,乃至 於深耕製程技術與材料研發,都是臺廠未來贏得 3DIC 商機的關鍵所在。┛