技術簡介
透過田口法分析技術,找出最佳電洞傳輸層刮刀塗佈參數。同時進行SnO2電子傳輸層摻雜技術的開發,當摻雜20 mM 18C6時,SnO2表面粗糙度變小、親水性增加、漏電流亦減少。在一體化(P1,P2,P3)單片集成製程中,透過調整雷射焦距、劃線次數及劃線圖案,優化P3雷射燒蝕製程,改善金鬚殘留及火山口高度過高之問題,使半穿透鈣鈦礦太陽光電小型模組的開路電壓與內部各別電池的開路電壓總和之間虧損降低。在透明導電背電極調整濺鍍ITO薄膜時的氧流量為0.6 sccm,穿透度提高至91.2%(@900 nm),片電阻降低至10.4 Ω/sq.,活性面積4 cm2的4T鈣鈦礦/矽晶堆疊型太陽電池效率達到23.8%。
Abstract
This project employs Taguchi method analysis techniques to identify the optimal parameters for the blade coating of the hole transport layer. Simultaneously, it involves the development of doping techniques for the SnO2 electron transport layer. When doped with 20 mM 18C6, the surface roughness of SnO2 decreases, hydrophilicity increases, and leakage current also decreases. In the monolithic integrated process (P1, P2, P3), by adjusting the laser focal length, scribing frequency, and scribing pattern, the P3 laser ablation process is optimized. This addresses issues such as residual gold whiskers and excessive volcano heights, resulting in a reduction in losses between the open-circuit voltage of semi-transparent perovskite solar modules and the sum of the open-circuit voltages of individual cells. In adjusting the sputtering of ITO thin films for transparent conductive back electrodes, an oxygen flow rate of 0.6 sccm is used. This leads to an increased transmittance of 91.2% (@900 nm), and the sheet resistance is reduced to 10.4 Ω/sq. The efficiency of a 4T perovskite/silicon stack solar cell with an active area of 4 cm2 reaches 23.8%.
技術規格
1. 完成6 cm×6 cm的基板上的電洞傳輸層刮刀塗佈,以Alpha-Step量測分布於9宮格不同位置上薄膜的整體平均厚度為217.9±11.2 nm,而以AFM量測之表面粗糙度為4.40±0.93 nm
2. 完成尺寸5cm×5cm無機電子傳輸層之導電式原子力顯微鏡之表面漏電流檢測,SnO2與傳統TiO2電子傳輸層之表面漏電流量測值分別為1.6 nA與382.5 pA,但改良之TiO2/SnO2雙層式結構可大幅降低至4.5 pA
3. 調整濺鍍ITO時的氧流量為0.6 sccm,提高ITO穿透度至91.2%(@900 nm),降低ITO片電阻至10.4 ohm/sq.,活性面積4 cm2的半穿透鈣鈦礦太陽光電mini模組效率12.6%,活性面積4 cm2的4T鈣鈦礦-矽晶堆疊太陽電池效率為23.8%。
Technical Specification
Using a blade-coating method, a hole transport layer was applied to a 6 cm × 6 cm substrate. The overall average thickness of the film measured at different positions in a 9-grid pattern using Alpha-Step was 217.9±11.2 nm, while the surface roughness measured by AFM was 4.40±0.93 nm.
Surface leakage current of a 5 cm × 5 cm inorganic electron transport layer was examined using conductive atomic force microscopy. The surface leakage current values for SnO2 and traditional TiO2 electron transport layers were 1.6 nA and 382.5 pA, respectively. However, the improved TiO2/SnO2 bilayer structure significantly reduced the leakage current to 4.5 pA.
Adjusting the oxygen flow rate during ITO sputtering to 0.6 sccm increased the transparency of ITO to 91.2% (@900 nm) and decreased the sheet resistance to 10.4 ohm/sq. For a semi-transparent perovskite solar mini-module with an active area of 4 cm2, the efficiency was 12.6%. For a 4T perovskite-silicon tandem solar cell with the same active area, the efficiency reached 23.8%.
技術特色
完成初步的4T鈣鈦礦/矽晶堆疊型太陽電池整合,效率達到23.8%。
應用範圍
堆疊太陽電池
接受技術者具備基礎建議(設備)
相關鈣鈦礦太陽電池設備
接受技術者具備基礎建議(專業)
相關太陽電池基礎知識
聯絡資訊
聯絡人:吳世雄 太陽光電技術組
電話:+886-6-3636841 或 Email:shihhsiung@itri.org.tw
客服專線:+886-800-45-8899
傳真:+886-6-3032029