『您的瀏覽器不支援JavaScript功能,若網頁功能無法正常使用時,請開啟瀏覽器JavaScript狀態』

跳到主要內容區塊

工業技術研究院

:::

技術名稱: 動力設備耗能診斷方法

技術簡介

一種動力設備耗能診斷方法,應用於一動力設備。首先,感測動力設備的運轉訊號,並利用訊號處理方法擷取運轉訊號中的特徵訊號。接著,利用類神經網路和一組經驗法則基於特徵訊號判斷動力設備運轉的問題屬性,並比較兩者所判斷得的問題屬性。當兩者所判斷得的問題屬性不相同時,則修正類神經網路。 當兩者所判斷得的問題屬性相同時,則利用關聯性分析方法依據利用類神經網路所判斷得的問題屬性進行跟因與耗能的關聯性分析,以得到問題屬性中每一根因的嚴重程度及耗能程度。並且,利用趨勢分析方法以得到的耗能程度預測耗能趨勢。

Abstract

A method for diagnosing energy consumption of a power plant is applied in the power plant. First, sense at least one working signal of the power plant when the power plant works, and acquire at least one characteristic signal from each working signal. Analyze the characteristic to determine question classification in relation to working state of the power plant using neural network and a set of decision rule, and compare two question classifications for the neural and the set of decision rule .When two question classifications are not the same, modify the neural network with the characteristic signal. When two question classifications are not the same, execute relation analysis of root cause and energy consumption with the question classification to obtain order of severity and degree of energy consumption for each root cause. Then, forecast a tendency of the energy consumption with the degree of energy consumption.

技術規格

一種動力設備耗能診斷方法(適用於200HP以下的馬達)

Technical Specification

none

技術特色

利用偵測運轉中動力設備的振動、溫度等參數,經由所開發的演算法來判斷動力設備的異常原因為何。除了判斷異常原因外,同時提供可改善的狀態的方法,進而達到減少動力設備因設備異常導致額外的能量損耗。此演算法的推導是以大量的診斷訊號為基礎,經由不斷地訓練找出設備異常的特徵。經由這些特徵來建立一套設備診斷分析的演算法。旨在往後動力設備均可透過此演算法來改善異常狀態進而達到能源節約的目標。

應用範圍

轉動設備診斷與轉動設備之耗能根因分析。

接受技術者具備基礎建議(設備)

資料庫操作

接受技術者具備基礎建議(專業)

具備RF相關架設經驗

技術分類 02 D工業節能研究

聯絡資訊

聯絡人:曾仕民 智慧節能系統技術組

電話:+886-6-3636637 或 Email:SMTzeng@itri.org.tw

客服專線:+886-800-45-8899

傳真:+886-3-5820050

[{"text":"企業網","weight":13.0},{"text":"材化所","weight":11.5},{"text":"機械所","weight":10.0},{"text":"綠能所","weight":9.4},{"text":"生醫所","weight":8.0},{"text":"半導體","weight":6.2},{"text":"南分院","weight":5.0},{"text":"太陽能","weight":5.0},{"text":"課程","weight":5.0},{"text":"遠紅外線","weight":5.0},{"text":"雷射","weight":4.0},{"text":"LED","weight":4.0},{"text":"LED可見光","weight":3.0},{"text":"5G","weight":3.0},{"text":"工研人","weight":3.0},{"text":"電光所","weight":3.0},{"text":"綠能與環境研究所","weight":3.0},{"text":"機械","weight":3.0},{"text":"資通所","weight":2.0},{"text":"面板","weight":2.0},{"text":"文字轉語音","weight":2.0},{"text":"實習","weight":2.0},{"text":"無人機","weight":2.0},{"text":"生醫","weight":2.0},{"text":"3D","weight":2.0},{"text":"v2x","weight":2.0},{"text":"員工","weight":2.0},{"text":"地圖","weight":2.0},{"text":"太陽光電","weight":2.0},{"text":"材料與化工研究所","weight":1.0}]