『您的瀏覽器不支援JavaScript功能,若網頁功能無法正常使用時,請開啟瀏覽器JavaScript狀態』

跳到主要內容區塊

工業技術研究院

:::

技術名稱: 用電負載預測技術

技術簡介

用電負載預測可依據歷史用電記錄樣本,利用支持向量回歸機器學習理論模式,作未來30日內之小時級耗能預測。

Abstract

By applying the Support Vector Regression (SVR, which is one of machine learning algorithm) the power load forecasting provides the hourly load prediction up to a month day by day according to past electricity power usage pattern.

技術規格

小時級用電負載預測、平均預測誤差率

Technical Specification

hourly load prediction, mean absolute percentage error

技術特色

藉由真實耗能資訊的收集,利用人工智慧學習演算法建構耗能模型,並進一步作耗能預測。依據預測結果,可以計算未來可能的電費提供使用者參考,當預測值超過使用者設定的目標值時產生耗能預警,亦可以進行耗能比較分析,提供節能建議或直接進行用電設備耗能管理。

應用範圍

短期電力負載用電預測、建築物設備用電節能節費管理

接受技術者具備基礎建議(設備)

PC、具通訊及控制功能之電力量表

接受技術者具備基礎建議(專業)

程式語言撰寫能力

技術分類 02 D民生節能研究

聯絡資訊

聯絡人:林政廷 智慧節能系統技術組

電話:+886-3-5915404 或 Email:tim_lin@itri.org.tw

客服專線:+886-800-45-8899

傳真:+886-3-5820050

[{"text":"企業網","weight":13.0},{"text":"材化所","weight":11.5},{"text":"機械所","weight":10.0},{"text":"綠能所","weight":9.4},{"text":"生醫所","weight":8.0},{"text":"半導體","weight":6.2},{"text":"南分院","weight":5.0},{"text":"太陽能","weight":5.0},{"text":"課程","weight":5.0},{"text":"遠紅外線","weight":5.0},{"text":"雷射","weight":4.0},{"text":"LED","weight":4.0},{"text":"LED可見光","weight":3.0},{"text":"5G","weight":3.0},{"text":"工研人","weight":3.0},{"text":"電光所","weight":3.0},{"text":"綠能與環境研究所","weight":3.0},{"text":"機械","weight":3.0},{"text":"資通所","weight":2.0},{"text":"面板","weight":2.0},{"text":"文字轉語音","weight":2.0},{"text":"實習","weight":2.0},{"text":"無人機","weight":2.0},{"text":"生醫","weight":2.0},{"text":"3D","weight":2.0},{"text":"v2x","weight":2.0},{"text":"員工","weight":2.0},{"text":"地圖","weight":2.0},{"text":"太陽光電","weight":2.0},{"text":"材料與化工研究所","weight":1.0}]