『您的瀏覽器不支援JavaScript功能,若網頁功能無法正常使用時,請開啟瀏覽器JavaScript狀態』

跳到主要內容區塊

工業技術研究院

:::

技術名稱: 設備故障預診斷與健康管理技術

技術簡介

設備故障預診斷與健康管理技術藉由分析機台資料來監控和評估設備/零件的健康狀態,並根據健康狀態來決定出最佳的維護或更換時機,可減少非預期性停機。

Abstract

Developed Prognostics and Health Management (PHM) technology analyzes sensor data to assess health status and to predict remaining-useful-life of equipment/parts. This technology can decide an appropriate timing to maintain or replace parts, and reduce unexpected downtime.

技術規格

.以量化數據準確呈現各種零件的健康指標以及零件剩餘壽命 .準確率>95%,誤警報率<1%

Technical Specification

. Provide health Indicator and Remaining Useful Life of critical parts. . Results: accuracy is higher than 95% and false alarm rate is less than 1%

技術特色

本技術榮獲2017年全球百大科技研發獎。藉著收集、分析設備資料來監控與評估設備及其零件的健康狀態,並整合十幾種人工智慧演算法建立「眾智式AI學習預測技術」,及早預測設備需要維修的時間點,預測準確率達95%,使工廠能更積極掌握設備的健康情況,大幅減少產線因設備突然故障而必須停頓的風險,實踐工業4.0智慧製造的應用。

應用範圍

可應用於半導體、光電、機械加工產業評估設備/零件/系統建康狀態、預測零件故障、預測零件剩餘壽命與產線問題排查,亦可廣泛使用在醫療或其他領域之異常偵測。

接受技術者具備基礎建議(設備)

分析電腦: CPU i5等級以上、至少32GB記憶體、高容量SSD主硬碟。

接受技術者具備基礎建議(專業)

熟悉軟體操作與資料分析基本概念。

技術分類 製造系統智慧化

聯絡資訊

聯絡人:姜林宛樺 執行長室

電話:+886-3-5917919 或 Email:lily@itri.org.tw

客服專線:+886-800-45-8899

傳真:+886-3-5910257

[{"text":"企業網","weight":13.0},{"text":"材化所","weight":11.5},{"text":"機械所","weight":10.0},{"text":"綠能所","weight":9.4},{"text":"生醫所","weight":8.0},{"text":"半導體","weight":6.2},{"text":"南分院","weight":5.0},{"text":"太陽能","weight":5.0},{"text":"課程","weight":5.0},{"text":"遠紅外線","weight":5.0},{"text":"雷射","weight":4.0},{"text":"LED","weight":4.0},{"text":"LED可見光","weight":3.0},{"text":"5G","weight":3.0},{"text":"工研人","weight":3.0},{"text":"電光所","weight":3.0},{"text":"綠能與環境研究所","weight":3.0},{"text":"機械","weight":3.0},{"text":"資通所","weight":2.0},{"text":"面板","weight":2.0},{"text":"文字轉語音","weight":2.0},{"text":"實習","weight":2.0},{"text":"無人機","weight":2.0},{"text":"生醫","weight":2.0},{"text":"3D","weight":2.0},{"text":"v2x","weight":2.0},{"text":"員工","weight":2.0},{"text":"地圖","weight":2.0},{"text":"太陽光電","weight":2.0},{"text":"材料與化工研究所","weight":1.0}]