『您的瀏覽器不支援JavaScript功能,若網頁功能無法正常使用時,請開啟瀏覽器JavaScript狀態』

跳到主要內容區塊

工業技術研究院

:::

工業技術與資訊月刊

329期2019年05月號

出版日期:2019/05/15

正方形 Icon 產業焦點 Focus

產學研打造世界級晶片大腦

李洵穎

人工智慧(AI)能為人類做的事情愈來愈多,透過演算法,人工智慧不僅會跟人對話,能認出人臉,幫人看病,甚至還幫人開車。在AI加持下,各產業創新產品與服務全面興起。這些新興應用背後的運算能力,靠的是AI晶片的突破,有如汽車引擎一般,是加速AI發展的關鍵!

在AI加持下,各產業創新產品與服務全面興起,背後靠的正是AI晶片的突破,有如汽車引擎一般,成為加速AI發展的關鍵!
在AI加持下,各產業創新產品與服務全面興起,背後靠的正是AI晶片的突破,有如汽車引擎一般,成為加速AI發展的關鍵!

AI概念提出至今已超過一甲子,但受限於晶片運算處理效能及記憶體等技術限制,致使人們冀望AI能夠達成的許多應用無法實現。時至今日,高效運算和演算法進展一日千里之際,AI發展可謂水到渠成。

工研院電子與光電系統研究所所長吳志毅表示,AI基本要素有三:硬體、軟體和應用,三者缺一不可。AI興起的先決條件就在於運算速度快,受惠半導體技術精進與演算法優化,AI已能搭配硬體深入生活應用,像是物聯網、自駕車、智慧製造等,為生活與產業帶來各式新興應用。

近年AI引起各界關注的引爆點應是AlphaGo打敗中、韓棋王。AlphaGo背後有上千台電腦伺服器同時運算,再挑出最佳的棋步,AlphaGo的獲勝儘管證明了AI的能耐,但有一點不能忽視的是,支援AlphaGo的電腦,所耗用電力卻是人腦的1萬倍,務實來看,AI不可能在這麼大的功耗下發展,更遑論進入你我生活。

吳志毅認為,更快的運算速度與更低的功耗是現階段AI硬體的主要訴求,且須結合深度學習演算法,才有利於AI發展。「如果說各國在AI領域的競爭是一場硬仗,那麼晶片會是最關鍵的一環,」吳志毅說。

AI處理晶片面面觀
AI處理晶片面面觀

國際大廠爭相布局AI晶片

AI處理晶片主要分為中央處理器(CPU)、繪圖晶片(GPU)、可編程邏輯閘陣列晶片(FPGA)及特殊應用晶片(ASIC)等4種。依特性與使用目的,又可區分為雲端運算與邊緣運算兩類。雲端運算類晶片需要處理龐大的數據,運算時間長,晶片功耗較高,但整體效能佳,以CPU和GPU為發展主流,主要應用在資料中心與超級電腦;邊緣運算類晶片則是在雲端與終端裝置間設置運算層,先行處理龐大資料,傳送即時性佳,功耗要求低、晶片體積小,以FPGA與ASIC為主。

觀察目前主要國際大廠的AI晶片現況,GPU龍頭輝達(NVIDIA)布局AI腳步最快,GPU同步重覆運算能力適用於AI深度學習;CPU大廠英特爾(Intel)先後併購Nervan System、Mobileye、Movidius、Altera及eAsic等AI相關公司,布局AI晶片企圖心明顯;Google推出AI晶片TPU(Tensor Processing Unit),屬客製化ASIC;微軟(Microsoft)則推出基於FPGA的視覺AI晶片。

吳志毅分析,一般認為以演算法為基礎的AI,軟體成分較重,但從傳統晶片大廠積極競逐AI市場的大動作來看,「AI時代硬體發展的重要性不亞於軟體,這正是台灣發展AI的希望所在。」

AI時代下台灣的機會點

AI運作約略可粗分為兩階段,分別是「學習」和「推論」,前者透過機器學習技術,利用大量樣本數據對演算法進行訓練;後者則執行演算法,在終端應用解讀現實的數據。

觀諸國際大廠布局,雲端運算使用的CPU、GPU晶片已被國際大廠把持。吳志毅認為,台灣不一定要搶大廠擅長的高效能運算晶片設計市場,加上國際大廠未來也會借重台積電先進製程,突顯台積電在這場AI戰爭中的重要地位。此外,Google資料中心也採用不少台灣廠商元件和產品,台灣亦具發展優勢。

吳志毅指出,台灣若要切入AI產業,潛在機會在於邊緣運算。隨著AI技術日趨演進,AI由雲端走向裝置端已成必然趨勢,裝置端AI的主要關鍵在於擁有高效能的AI晶片。「台灣在晶片、終端設備與系統具有優勢,也擁有高度的靈活度和彈性,如能配合軟體產業,就有很大的發展空間。」

台灣半導體產業2018年總產值居全球第三,其中晶圓代工及封裝測試皆為全球第一,IC設計業則僅次美國居全球第二。吳志毅認為,在半導體製造強項的基礎上,配合軟體平台,在軟硬體相得益彰下,台灣在AI的發展機會還是很好。

AI on Chip示範計畫籌備小組啟動

為了讓台灣半導體產業能在AI時代占有一席之地,政府在2018年通過「台灣AI行動計畫」,成立「AI on Chip示範計畫籌備小組」,藉此推動台灣AI晶片產業發展,打造世界級AI晶片,提升在人工智慧領域的國際地位。

工研院電光系統所副所長張世杰進一步指出,台灣的IC設計業在多樣化的裝置端晶片十分擅長,但在裝置端AI晶片方面,部分廠商面臨光罩價格過高,不適用少量多樣情境;此外,廠商也遭遇缺乏關鍵AI加速器,AI系統整合能力不足的問題。「AI on Chip計畫」就是要協助解決台灣廠商發展AI晶片的相關問題,進而取得市場領先地位。

專家觀點,左為工研院電子與光電系統研究所所長吳志毅,右為工研院電子與光電系統研究所副所長張世杰。
專家觀點,左為工研院電子與光電系統研究所所長吳志毅,右為工研院電子與光電系統研究所副所長張世杰。

聚焦四大AI晶片議題重點

AI on Chip計畫整合台灣產學研研發能量的計畫平台,工研院為成員之一,計畫聚焦「半通用AI晶片」、「異質整合AI晶片」、「新興運算架構AI晶片」與「AI晶片軟體編譯環境開發」四大議題,推動台灣AI晶片發展藍圖,建立起世界領先的AI晶片供應鏈。
張世杰說明,「半通用型AI晶片」著重在發展特定應用的邊緣運算推論及深度學習晶片;「異質整合AI晶片」可把不同晶片透過異質整合技術提升系統效能,同時縮小體積、減少功耗、降低成本,讓AI系統方便應用於更多情境,以應付少量多樣的需求。

至於「新興運算架構AI晶片」則發展類比、記憶體及類神經新興運算架構,以大幅突破目前AI運算的耗能及運算效能瓶頸,重點放在研發類腦神經運算晶片,預計明年可望問世,目標在打造出規格全球前三名的AI晶片。

「AI晶片軟體編譯環境開發」則會提供最適化的AI晶片軟體開發環境,以充分發揮AI硬體效能。張世杰說,AI晶片多需配合實際系統應用進行客製化設計,台灣除了少數一線IC設計大廠,中小型IC設計公司多缺乏軟體開發能力,更遑論進行專利布局,工研院研發的「AI晶片架構設計與軟體編譯解決方案」,就是為此設計,可大幅縮短設計時程、快速搶進AI晶片市場。

聚焦四大AI晶片議題重點。
聚焦四大AI晶片議題重點。

產學研打造高效超低功耗AI晶片

AI on Chip示範計畫第一階段將以發展超低功耗AI晶片為主,應用目標為裝置端產品,第二階段則鎖定發展高性能AI晶片,應用目標為邊緣運算伺服器。由於規劃發展的技術極具挑戰性,計畫執行將以業界引導、學研共同開發的模式來進行,預計今年6月成立AI on Chip產業聯盟,結合國內主要IC設計業者和平台軟硬體廠商,屆時將有20家以上廠商加入。

除了晶片技術的發展,新一代AI晶片的應用場域,也是規劃的重點。張世杰表示,整合物聯網晶片化整合服務計畫,發展相關的智慧物聯網(AIoT)產品,協助一般中小企業發展更具競爭力的AI方案,應用於智慧製造、智慧醫療與智慧城市等場域,協助產業數位轉型。初步規劃以某百貨商場為示範場域,將AI晶片導入監視攝影機裝置中,進行消費者購物分析。

整體而言,在邊緣運算越來越重視終端裝置運算能力的趨勢下,我國發展AI on Chip的策略,是運用台灣資通訊硬體的優勢,提供高性價比、低耗能的AI晶片,連結服務驗證場域,訴諸互利關係以連結國際大廠,吸引國際AI平台採用台灣AI晶片產品,進而促成台灣在AI on Chip的出口國地位,保有台灣半導體產業在AI時代的領先優勢。

下載全文PDF Icon下載全文PDF


[{"text":"企業網","weight":13.0},{"text":"材化所","weight":11.5},{"text":"機械所","weight":10.0},{"text":"綠能所","weight":9.4},{"text":"生醫所","weight":8.0},{"text":"半導體","weight":6.2},{"text":"南分院","weight":5.0},{"text":"太陽能","weight":5.0},{"text":"課程","weight":5.0},{"text":"遠紅外線","weight":5.0},{"text":"雷射","weight":4.0},{"text":"LED","weight":4.0},{"text":"LED可見光","weight":3.0},{"text":"5G","weight":3.0},{"text":"工研人","weight":3.0},{"text":"電光所","weight":3.0},{"text":"綠能與環境研究所","weight":3.0},{"text":"機械","weight":3.0},{"text":"資通所","weight":2.0},{"text":"面板","weight":2.0},{"text":"文字轉語音","weight":2.0},{"text":"實習","weight":2.0},{"text":"無人機","weight":2.0},{"text":"生醫","weight":2.0},{"text":"3D","weight":2.0},{"text":"v2x","weight":2.0},{"text":"員工","weight":2.0},{"text":"地圖","weight":2.0},{"text":"太陽光電","weight":2.0},{"text":"材料與化工研究所","weight":1.0}]